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Abstract
For a quantum theory that includes exponentially decaying states and Breit–
Wigner resonances, which are related to each other by the lifetime–width
relation τ = h̄

�
, where τ is the lifetime of the decaying state and � is the

width of the resonance, one has to go beyond the Hilbert space and beyond
the Schwartz–Rigged Hilbert Space � ⊂ H ⊂ �× of the Dirac formalism.
One has to distinguish between prepared states, using a space �− ⊂ H, and
detected observables, using a space �+ ⊂ H, where −(+) refers to analyticity
of the energy wavefunction in the lower (upper) complex energy semiplane.
This differentiation is also justified by causality: a state needs to be prepared
first, before an observable can be measured in it. The axiom that will lead to
the lifetime–width relation is that �+ and �− are Hardy spaces of the upper
and lower semiplane, respectively. Applying this axiom to the relativistic case
for the variable s = pµpµ leads to semigroup transformations into the forward
light cone (Einstein causality) and a precise definition of resonance mass and
width.

PACS numbers: 03.65.Ta, 02.20.−a

1. Time asymmetry

Time asymmetry does not mean time reversal non-invariance, i.e. it is not described by a
Hamiltonian H that does not commute with the time reversal AT or the CP operator [1]:

[AT ,H ] �= 0 or [CP,H ] �= 0. (1)

It may be intriguing, however, to speculate about a possible connection [2].
Time asymmetry does not mean irreversibility or thermodynamic arrow of time. It is

not entropy increase in an isolated classical system, dS
dt

> 0. There may, however, be some
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relation to entropy increase. For instance, Peierls (1979) explains entropy increase from initial
boundary conditions in Boltzmann’s Stosszahl ansatz [3].

Time asymmetry also does not mean the usual quantum mechanical arrow of time for
‘open’ quantum systems, brought about by an external reservoir [4] described by the Liouville
equation,

dW

dt
= LW(t) ≡ −i[H,W(t)] + IW(t), (2)

in which a ‘superoperator’, I, describes the external effect of the reservoir or of a measurement
apparatus or of another environment (decoherence).

By time asymmetry, we mean time asymmetric boundary conditions for time symmetric
dynamical equations.

The best-known example is the radiation arrow of time [5]. Maxwell’s equations
(dynamical differential equations) are symmetric in time. A boundary condition excludes
the strictly incoming fields and selects only the retarded fields of the other sources in the
region:

Aµ(x) = A
µ
ret(x) + A

µ

in(x) = A
µ
ret(x), (3)

A
µ

in(x) = 0 (Sommerfeld radiation condition). (4)

The boundary condition is an additional ‘principle of nature’ that chooses, of the two solutions
of the Maxwell equations,

A
µ
∓(�x, t) =

∫
δ

(
t ′ −

(
t ∓ |�x − �x ′|

c

))
jµ( �x ′, t ′)

|�x − �x ′| d3x ′ dt ′, (5)

the retarded solution

A
µ
ret(�x, t) ≡ A

µ
−(�x, t) =

∫
jµ

( �x ′, t − |�x− �x ′ |
c

)
|�x − �x ′| d3x ′. (6)

The ‘disturbance’ Aµ(x) at the position �x at time t is caused by the source jµ at another point
�x ′, at an earlier time t ′ = t − |�x− �x ′ |

c
� t . Radiation must be emitted (at t ′) by a source before

it can be detected by a receiver at t � t ′.

2. Dynamical equations and their boundary conditions

Standard quantum mechanics lacks time asymmetric boundary conditions. The dynamical
equations are as follows.

In the Heisenberg picture,

ih̄
∂�(t)

∂t
= −[H,�(t)] (7a)

ih̄
∂

∂t
ψ(t) = −Hψ(t) (7b)

for the observable �(t) = |ψ(t)〉〈ψ(t)|, with state W = |φ〉〈φ| kept fixed.
Or in the Schrödinger picture,

ih̄
∂W(t)

∂t
= [H,W(t)] (8a)

ih̄
∂

∂t
φ(t) = Hφ(t) (8b)

for the state W(t) or φ(t) with observable � = |ψ〉〈ψ | kept fixed.
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In standard quantum mechanics [6], one solves these equations under the boundary
conditions

set of states {φ} = H = Hilbert space = set of observables {ψ}. (9)

As a consequence of the Hilbert space boundary condition, one obtains from the Stone–von
Neumann theorem [7]

ψ(t) = eiHtψ, −∞ < t < +∞ in the Heisenberg picture (10)

φ(t) = e−iHtφ, −∞ < t < +∞ in the Schrödinger picture. (11)

The sets of operators

{U(t) = eiHt : −∞ < t < +∞} (12)

and

{U †(t) = e−iH †t : −∞ < t < +∞} (13)

form a group, because the products U(t1)U(t2) = U(t1 + t2) and the inverses U−1(t) = U(−t)

exist. For every observable ψ(t) = U(t)ψ at time t there is also an observable ψ(−t) =
U−1(t)ψ at time −t . The same applies for the state φ and the operator U †(t).

In quantum physics one distinguishes [8] between states, which are described by density
operators W or by state vectors φ, and observables, which are described by operators
A = A†,� = �2 or by observable vectors ψ if � = |ψ〉〈ψ |.

State W (in-states φ+ of scattering experiment) is prepared by a preparation apparatus
(e.g. accelerator).

Observable A (out-observables ψ−, ‘out-state’) is registered by a registration apparatus
(e.g. detector).

Experimental quantities, PW(�(t)), are the probabilities to measure the observable � in
the state W . They are calculated in theory as Born probabilities. They are measured as ratios
of large numbers of detector counts (‘relative frequencies’).

PW(�(t)) ≡ Tr(�(t)W0) = Tr(�0W(t)) ≈ N(t)/N (14)

|〈ψ(t)|φ〉|2 = |〈ψ |φ(t)〉|2
in the Heisenberg picture in the Schrödinger picture

(15)

The comparison between theory and experiment is given by

PW(�(t)) ≈ N(t)

N
. (16)

The left-hand side is the calculated prediction, and the right-hand side is the ratio of detector
counts, where N(t) and N are ‘large’ integers. The comparison between theory and experiment
is indicated by ≈.

What is the experimental evidence for this time evolution group? It is obvious that a state
φ must be prepared before the observable |ψ(t)〉〈ψ(t)| can be measured in it (causality), e.g.
the detector cannot register the decay products before the decaying state has been prepared.
This means that we have a quantum mechanical arrow of time.

The Born probability to measure the observable |ψ(t)〉〈ψ(t)| in the state φ,

N(t)

N
≈ Pφ(ψ(t)) = |〈ψ(t)|φ〉|2 = |〈eiHtψ |φ〉|2 = |〈ψ |e−iHtφ〉|2 = |〈ψ |φ(t)〉|2, (17)

exists (experimentally) only for t � t0 (= 0),

3
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where t0 is the preparation time of the state φ. In contrast, the unitary group of the Hilbert
space axiom predicts |〈ψ(t)|φ〉|2 for all −∞ < t < +∞.

As a consequence of this obvious phenomenological condition (causality), one obtains
the quantum mechanical arrow of time.
In the Heisenberg picture the time translated observables

ψ(t) = eiHtψ are physically defined only for t > t0 = 0. (18)

In the Schrödinger picture the time-evolved states

φ(t) = e−iHtφ are physically defined only for t > t0 = 0. (19)

The time evolution is asymmetric, 0 � t < ∞, and given by the semigroup

U×(t) = e−iH×t with 0 � t < ∞ for the states φ or W (20)

or by the semigroup

U(t) = eiHt with 0 � t < ∞ for the observables ψ or �. (21)

Therefore we have the task: find a theory (for instance choosing new boundary conditions to
replace the Hilbert space axiom) for which the solutions of the Schrödinger equation are given
by the semigroup U×(t) (20) and for which the solutions of the Heisenberg equation are given
by the semigroup U(t) (21).

Remark (semigroup symmetries of spacetime). In standard quantum mechanics, time
evolution is a subgroup of the spacetime symmetry transformations, which, according to the
Wigner–Bargmann theorem, are represented by the (projective) unitary representations in H of
the Galilei group G (for non-relativistic spacetime) and the Poincarè group P (for relativistic
spacetime) [9].

In the RHS formulation [10–12] using the Schwartz space Gelfand triplet, � ⊂ H ⊂ �×,
with the Dirac basis vector expansion

φ =
∫

dλ|λ〉〈λ|φ〉 for φ ∈ �, with |λ〉 = |λ1, λ2, λ3, . . . , λn〉 ∈ �×, (22)

symmetry transformations g ∈ G are represented by a triplet of operators [12–14]

U�(g−1) ⊂ U(g−1) = U †(g) ⊂ U×(g)

acting on � ⊂ H H ⊂ �×

e.g. for time translations e−iHt |� ⊂ e−iHt = (eiHt )† ⊂ e−iH×t , −∞ < t < ∞.

Here U(g) is a unitary representation of g in H. U�(g−1) is the restriction of U(g−1) to the
dense subspace � ⊂ H, which is a continuous operator with respect to the � topology, and
U×(g) is the conjugate operator of U�(g−1) in �×, defined by

〈φ|U×(g)|λ〉 = 〈U�(g−1)φ|λ〉, for all g ∈ G,φ ∈ �, |λ〉 ∈ �×. (23)

The algebra of observables H, Ji, Pi , etc is obtained by deriving U(g) using the limits with
respect to the �-topology; they are continuous operators in �. Their conjugate operators
H×, J×

i , etc are continuous in �× [13, 15].
This is a beautiful theory [10, 12–14], but it assumes that for every transformation g ∈ G

of the observable relative to the state, g : ψ → ψg , there exists an inverse transformation also
of the observable relative to the state (not the state relative to the observable), g−1 : ψ → ψg−1

.
For rotations and boosts this is meaningful, but for time translation, it would give an answer to
the question: what was the probability of an observable ψ in a state at a time t0 + t , with t < 0,
before the state will be prepared at t0? This contradicts causality. Therefore one must find

4
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a space �+ for the observables {ψ} such that the Galilei transformations of non-relativistic
spacetime are represented by a semigroup U+(R, t, x, v), t � 0. Similarly, for the relativistic
case mentioned in section 8, one must find a space (which we will also call �+) in which
the transformations of the detected observables relative to the prepared state form only a
semigroup into the forward light cone [16] expressing Einstein causality:

P+ = {
(�, x) :

(
�0

0 � 1, det � = +1
)
, x2 = t2 − x2 � 0, t � 0

}
. (24)

3. Resonances and decay

To find the theory that provides the time asymmetry semigroup, we use scattering, resonance
and decay phenomena [17]. Resonances and decaying states are characterized by definite
values of the discrete quantum numbers such as charges (particles species label) and by
angular momentum j . In addition they are defined by two real numbers. Resonances are
characterized by energy ER and width �, and decaying states are characterized by energy ED

and lifetime τ . Their properties are contrasted as follows:

(ER, �) defined by
(
ED,R = 1

τ

)
defined by

Breit–Wigner (Lorentzian) scattering exponential partial decay rate
amplitude
aBW

j = rη

E−(ER−i �
2 )

; 0 � E < ∞ Rη(t) = d
dt

Pη(t), R = ∑
η Rη(0)

Rη(t) = Rη(0) e−t/τ = Rη(0) e−Rt

where probability Pη(t) = |〈ψη|φD(t)〉|2

Resonances appear in Decaying states are
scattering, e.g. observed in decay, e.g.
e+e− → Z → e+e− π−p → �K0

S∣∣∣−−−−−→ π+π−

Resonances Decaying states
are measured by Breit–Wigner line are measured by the exponential law
shape in the cross section for the counting rate of the decay

products η

σj (E) ∼ |aj (E)|2 =
∣∣∣ rη

E−(ER−i �
2 )

+ B(E)

∣∣∣2
Rη(t) ≈ N(ti )

ti
∝ e− t

τ

B(E) is a slowly varying function of E, where N(ti) is the number of
the background. decay products registered in

the detector during the time
interval ti around ti .

An example of how well this agrees with an An example of the accuracy of this
experiment is given in figure 1. experimental law is given in figure 2.

Many people think that

{resonances} ≡ {decaying states}, (25)

and especially for non-relativistic quantum mechanics, a common assumption is that

h̄

�
= τ

(
or at least

h̄

�
≈ τ

)
. (26)
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Figure 1. Breit–Wigner for the Z-boson resonance [18].

Figure 2. Exponential for the K0
S decay rate [19].

This relation is based on the Weisskopf–Wigner (WW) approximation [20], and in standard
quantum theory there is no proof of it, as e.g. stated by

M. Levy: [21] ‘. . . There does not exist. . . a rigorous theory to which these various
(WW) methods can be considered as approximations.’

The energy of a resonance is the complex number

zR = ER − i
�

2
, the pole position of the S matrix or of the scattering amplitude aj (E).

6



J. Phys. A: Math. Theor. 41 (2008) 304019 A Bohm et al

What one can show using the Weisskopf–Wigner approximation methods is that the
probability of a prepared resonance state φ with Breit–Wigner energy distribution of width �

is obtained as [22]

Pφ(t)(ψ) ∼ e−�t/h̄ + � × (additional terms). (27)

Thus, in the Weisskopf–Wigner approximation, the probability rate has a non-exponential term
proportional to the width �. In general, one can prove that there is no Hilbert space vector
φ(t) that obeys the exact exponential law [23]. If, as in figure 2 for the K0

S -decay experiment,
the time dependence of |〈ψππ |φK0

S (t)〉|2 = N(ti )

N
is to be a perfect exponential (as shown by

this experiment [19]) then the decaying state vector φK0
S cannot be a Hilbert space vector.

4. Complex energies and a beginning of time

The simplest way to derive an exactly exponential decay probability is to postulate a state
vector φG, which has the property

HφG =
(

ER − i
�

2

)
φG and φG(t) = e−iHt φG, (28)

and whose decay probability into any observable |ψ〉〈ψ | is

PφG(t) = |〈ψ |φG(t)〉|2 = |〈ψ | e−iHt |φG(t)〉|2
= |〈ψ |φG〉 e−i(ER−i�/2)t |2 = |〈ψ |φG〉|2 e−�t . (29)

This vector φG of Gamow [24] makes no sense in standard quantum mechanics because

(i) it has a complex eigenvalue for a self-adjoint H,φG = |ER − i�/2〉;
(ii) it leads to the ‘exponential catastrophe’ [25], because in standard quantum mechanics the

time extends from −∞: −∞ < t < ∞.

To define a vector with the properties (28) and (29), one needs a theory for which

(i) the energy extends to values in the complex plane;
(ii) the time is restricted to 0 � t < +∞ (because a K0

S must be prepared first before one can
detect its decay products π+π−, and to avoid the exponential catastrophe).

In the standard (Hilbert space) theory of quantum physics, the time t has the values
−∞ < t < +∞, and the energy E is real (spectrum of self-adjoint Hamiltonian H) and
bounded from below (stability of matter): −∞ �= E0 � E < ∞.

Nevertheless, one speaks of complex energy:

(i) for the analytic S matrix: Sj (E) → Sj (z);
(ii) for the Gamow states: zR = ER − i�/2;

(iii) for the Lippmann–Schwinger equation or in the propagator of field theory: z = E ± iε, ε
infinitesimal.

Thus experiments require a quantum theory in which

(i) the time t has a ‘preferred direction’: t0 = 0 � t < ∞;
(ii) the energy E can take complex (discrete and continuous) values in the complex planes:

E → z ∈ C±:

|E〉 −→ |E ± iε〉 −→ |z±〉 z ∈ C±. (30)

The conclusion from this is that one has to restrict the set of allowed energy wavefunctions
φ(E) = 〈+E|φ+〉, which in standard quantum theory in H are represented by a class of
Lebesgue square integrable functions, to a smaller set.

7
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The first step in this direction was already taken by Schwartz, inspired by the Dirac bra–
ket formalism, when he restricted the set of classes of Lebesgue square integrable functions
L2 = {{h(E)}} to the set of smooth, rapidly decreasing (Schwartz) functions {φ(E)}. This
replacement of the Hilbert space H by the Schwartz space � gave a mathematical meaning to
the Dirac formalism [26].

The second step is to restrict the set of Schwartz space functions φ(E) further to the
set of smooth functions that have analytic extensions in the upper and lower complex energy
semiplanes, C+ and C−, respectively:

{φ(E) = 〈φ|E〉} →
{

〈φ+|E + iε〉 ≡ 〈φ+|E+〉 → 〈φ+|z+〉; z ∈ C+

〈ψ−|E − iε〉 ≡ 〈ψ−|E−〉 → 〈ψ−|z−〉; z ∈ C−
. (31)

5. Rigged Hilbert space

The mathematical basis for these modifications (31) is rigged Hilbert spaces (RHS) or Gelfand
triplets. The RHS was not devised for time asymmetry or the theory of resonances and decay,
but to provide a mathematical justification for Dirac’s bra- and ket-formalism [26].

Step 1. The first step away from the Hilbert space was to get the Dirac formalism, which has
the following two properties:

(i) The solutions of both the Heisenberg and the Schrödinger equations (for observables and
states) have a Dirac basis vector expansion,

φ =
∑
j,j3

∑
n

|En, j, j3)(En, j, j3|φ〉 +
∑
j,j3,η

∫
dE|E, j, j3, η〉〈E, j, j3, η|φ〉, (32)

which is the analogue of �x = ∑3
i=1 �eix

i , and where the basis vectors |E, j, j3, η〉 ≡ |E〉
are ‘eigenkets’ of H (and of a complete system of commuting observables for the other
quantum numbers j, j3, η). The basis vectors in (32) are defined as1 the eigenkets of an
operator H

〈Hφ|E, j, j3, η〉 = 〈φ|H×|E, j, j3, η〉 = E〈φ|E, j, j3, η〉 for all φ ∈ �, (33a)

or as ordinary eigenvectors

H |En, j, j3, η) = En|En, j, j3η). (33b)

In (32) and (33a), the values of E are from a continuous set, e.g., 0 � E < ∞.
(ii) The coordinates or ‘scalar products’ or the bra–kets 〈E|φ〉 = φ(E) are smooth, rapidly

decreasing functions of E (‘Schwartz function’ SR+ ). One gets a triplet of function spaces

{φ(E)} = {ψ(E)} = SR+ ⊂ L2 ⊂ S× (34)

and corresponding to this a triplet of abstract vector spaces

{φ} = {ψ} = � ⊂ H ⊂ �× � |E〉. (35)

The space �× denotes the space of continuous antilinear functionals of the space �;
for the Hilbert space, H× = H. Dirac kets are antilinear continuous Schwartz space
functionals.

1 The first equality defines the conjugate operator H× of H, H× ⊃ H †.

8
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The triplets (34) and (35) constitute rigged Hilbert spaces. (� has a locally convex nuclear
topology such that the Dirac basis vector expansion (32) is the nuclear spectral theorem.) The
RHS (34) of functions and distributions is equivalent (algebraically and topologically) to the
abstract RHS (35).

This Schwartz space triplet (of axiomatic quantum field theory) will not provide time
asymmetry, because solutions of the dynamical (Schrödinger or Heisenberg) equation with
boundary condition φ ∈ �,ψ ∈ � (Schwartz space) are again given by a group [15]

φ(t) = e−iHtφ(0), ψ(t) = eiHtψ(0), −∞ < t < +∞. (36)

For the Schwartz–Dirac kets one thus also obtains [15]

e−iH×t |E〉 = e−iEt |E〉 − ∞ < t < +∞. (37)

This means Step 1 away from the Hilbert space provides the Dirac kets (33a) and the Dirac
basis vector expansion (32), but the Dirac formalism still does not lead to complex energy
eigenvalues and resonance states (28), (29).

Step 2. Because observables |ψ−〉〈ψ−| defined by the detector and states φ+ defined
by the preparation apparatus are physically different entities, one should also distinguish
mathematically between a space of observables, which we call �+,

�+ � ψ− =
∑
j,j3,η

∫ ∞

0
dE|E, j, j3, η

−〉〈−E, j, j3, η|ψ−〉, (38)

and a space of states, which we call �−,

�− � φ+ =
∑
j,j3,η

∫ ∞

0
dE|E, j, j3, η

+〉〈+E, j, j3, η|φ+〉. (39)

The two Dirac basis vector expansions (38), (39) use different kinds of Dirac kets, which are
denoted as

|E, j, j3, η
∓〉 ∈ �×

±. (40)

This is suggested by the Lippmann–Schwinger in-plane waves |E+〉 for the prepared in-states
φ+, and the Lippmann–Schwinger out-plane waves |E−〉 for the detected out-observables ψ−.2

Because of the +iε in the Lippmann–Schwinger equation, the energy wavefunction of the
prepared in-state φ+,

φ+(E) = 〈+E, j, j3, η|φ+〉 = 〈φ+|E, j, j3, η+〉, (41)

is the boundary value of an analytic function in the lower complex energy semiplane (for
complex energy z = E + iε = E − iε immediately below the real axis 2nd sheet of the
S-matrix Sj (z)). Similarly, one surmises that the energy wavefunction of the observable
|ψ−〉〈ψ−|,

ψ−(E) ≡ 〈−E, j, j3, η|ψ−〉, (42)

extends to an analytic function in the upper complex energy plane. Thus one conjectures that
energy wavefunctions can only be those Schwartz functions that can be analytically continued
into the lower or upper complex energy semiplane, respectively. The space of allowed state
vectors must be smaller than the Schwartz space, and the space of allowed kets will be larger
than the set of Dirac kets and thus can include the eigenkets of complex energy.

2 The only major alteration of the standard S-matrix formalism is that here we use out-observables fulfilling the
Heisenberg equation and not out-states fulfilling the Schrödinger equation.

9
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6. Conjecturing the Hardy space axiom of time asymmetric quantum mechanics

To conjecture the spaces of φ+ and of ψ−, we start with the definition of a resonance by an
S-matrix pole at zR = ER − i�/2. If we derive from it

a Breit–Wigner
resonance amplitude and relate to this Breit–Wigner a Gamow state vector

a
BWi

j = Ri

E − zRi

⇐⇒ φG
j = |zRi

, j, j3, η
−〉

√
2π�i =

∫
dE|E, j, j3, η

−〉
i

√
�

2π

E − zR

for every pole zRi
zRi

= ERi
− i�i/2 (43)

which has the properties:
1. It is an eigenket with a discrete complex eigenvalue (as Gamow wanted) of the Hamiltonian:

H×|ER − i�/2−〉 = (ER − i�/2)|ER − i�/2−〉, |ER − i�/2−〉 ∈ �×
+ . (44)

2. It has the time evolution

〈U(t)ψ−
η |φG

j 〉 = 〈ψ−
η |U×(t)φG

j 〉 ∼
〈eiHt/h̄ψ−

η |ER − i�/2−〉 = 〈ψ−
η |e−iH×t/h̄|ER − i�/2−〉

= e−iERt/h̄e−(�/2)t/h̄〈ψ−
η |ER − i�/2−〉 for all ψ−

η ∈ �+, (45)

then we will show that

a resonance of width � ≡ a decaying state with lifetime τ = h̄

�
, (46)

and we will have a theory that unites resonance scattering and exponential decay.
To derive these results, further conditions had to be put on the analytic wavefunctions

φ+(z) and ψ−(z) in the lower complex semiplane 2nd sheet. These conditions suggested
Hardy functions (H Baumgartel).

Thus one is led to a new hypothesis [17]:
The energy wavefunctions of a state are smooth Hardy functions analytic on the lower complex
semiplane C−:

φ+(E) = 〈+E|φ+〉 ∈ (H2
− ∩ S)R+ . (47)

The energy wavefunctions of an observable are smooth Hardy functions analytic on the upper
complex semiplane C+:

ψ−(E) = 〈−E|ψ−〉 ∈ (H2
+ ∩ S)R+ . (48)

This hypothesis is not so far off from the properties that one often used for mathematical
manipulations in scattering theory. This new hypothesis led to the construction of the two
Hardy space triplets [27], i.e. two RHSs from which the two Dirac basis vector expansions
(38), (39) follow as the nuclear spectral theorem [28].

Therewith we have arrived at a new axiom of quantum mechanics, which is the Hardy
axiom space.

The set of prepared (in-) states defined by the preparation apparatus (e.g. accelerator) is
represented by

{φ+} = �− ⊂ H ⊂ �×
−. (49)

The set of (out-) observables defined by the registration apparatus (e.g. detector) is represented
by

{ψ−} = �+ ⊂ H ⊂ �×
+ . (50)

10
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Here �∓ are Hardy spaces of the semiplanes C∓. The kets |z±〉, |E±〉, |ER − i�/2±〉
are functionals on the space �∓. In particular, the exponentially decaying Gamow ket
|ER − i�/2−〉 is a functional on the space �+.

Experimentalists distinguish between preparation apparatus (accelerator) and registration
apparatus (detector). In the foundations of quantum mechanics, one talks of states and
observables as different entities [8, 29]. In Hilbert space theory one identifies them
mathematically. The Hardy space axiom also distinguishes mathematically between states,
φ+ ∈ �−, and observables, ψ− ∈ �+, as different dense subspaces of the same Hilbert space
H. This is entirely natural.

7. Semigroup time evolution

The dynamical equations of quantum mechanics (7a) or (8b) can now be solved for the
observable ψ− and the state φ+ under the Hardy space boundary condition ψ− ∈ �+ and
φ+ ∈ �−. As a consequence of the Paley–Wiener theorem [30] it follows that the solutions
of dynamical equations of observables in space �+ (Heisenberg equation) and of states in the
space �− (Schrödinger equation) are given by the semigroups

ψ−(t) = eiHtψ− t0 = 0 � t < ∞ (51)

φ+(t) = e−iHtφ+ t0 = 0 � t < ∞, (52)

respectively.
The Lippmann–Schwinger scattering states in �×

+ fulfil

e−iH×t |Ejη−〉 = e−iEt |Ejη−〉 0 � t < ∞. (53)

Therefore, the probability for the time-evolved observable ψ−(t) in the state φ+ can now be
calculated:

Pφ+(ψ−(t)) = |〈ψ−(t)|φ+〉|2 = |〈eiHtψ−|φ+〉|2 = |〈ψ−|e−iH×tφ+〉|2 for t � t0 = 0 only.

(54)

This is in agreement with the phenomenological conclusion at which we arrived in (17) on the
basis of causality. For the detector counts, this means that

Pφ+(ψ−(t)) ∼ N(t)/N can be measured only for t � 0, (55)

i.e., after the state has been prepared.
As a special case, the probability for the decay products |ψ−

η 〉〈ψ−
η | in a Gamow state

φG = |ER − i�/2−〉 is predicted to be

|〈eiHt/h̄ψ−
η |φG〉|2 = e−�t/h̄|〈ψ−

η |φG〉|2 only for t � 0. (56)

This avoids the ‘exponential catastrophe’ [25] for Gamow states.

8. Application: correct values of mass and width of the Z-boson and other relativistic
resonances

Causal evolution of the non-relativistic spacetime can be extended to relativistic spacetime.
Whereas non-relativistic time evolution is described by the Galilei group with invariants
m,E, j, η (particle species or channel number), the relativistic time evolution is described by
the Poincarè group P with invariants s = pµpµ and j , spin, for a particle species η [31]. The
causal time evolution is then given by the Poincarè semigroup into the forward light cone,

11
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Table 1. Z-boson masses and widths from PDG.

MZ = 91.1875 ± 0.0021 GeV MR = 91.1611 ± 0.0023 GeV MZ = 91.1526 ± 0.0023 GeV
�Z = 2.4939 ± 0.0024 GeV �R = 2.4943 ± 0.0024 GeV �Z = 2.4945 ± 0.0024 GeV

P+ = {(�, x) : x2 = t2 − x2 � 0, t � 0}. (57)

In analogy to Wigner’s unitary group representations [s = m2, j ] for stable particles, the
relativistic resonance particles are described by semigroup representations into the forward
light cone with invariants [sR, j ] [32], where sR is a complex mass squared given by the pole
position of the relativistic S-matrix. This means that the resonance amplitude ares

j (s) is given
by

ares
j (s) = r

s − sR

. (58)

The basis vectors of the semigroup representation [sR, j ] are analogous to the Wigner kets
given by the relativistic Gamow ket |[sR, j ]p̂j−

3 〉 [32].
With only the complex number for the pole position sR given, there can be many

parameterizations in terms of two real parameters, (M,�). For instance, for the Z-boson
one used

sR = (MR − i�R/2)2 (59a)

sR = M
2
Z − iMZ�Z. (59b)

In addition, a very popular parameterization is the on-the-mass-shell definition of (MZ, �Z),
obtained from the propagator definition in the on-the-mass-shell renormalization scheme [33]:

ares
j (s) = RZ

s − M2
Z + i s

MZ
�Z

. (60)

The values for these different parameterizations (M,�) are obtained from fits of aj (s) =
ares

j (s) + Bj(s) to the cross section data (‘line shape’) |aj (s)|2. (B(s) is a slowly varying
background.) Depending upon the different choices (59) and (60), this leads to the different
‘experimental’ values of the resonance mass (MZ and MZ are listed in PDG book) as given
in table 1: the situation for the other well-measured (hadron) resonances  and ρ is similar.
Therefore the question is: which is the correct pair of mass and width? Or is there no right
value—is the value of M and � just a matter of convention for the parameterization of the
complex value sR?

Using, in analogy to Wigner’s definition for stable relativistic particles, the definition by
causal relativistic spacetime transformations as the definition for the mass of a relativistic
resonance, one can fix the values of M and � in the parameterization (59) uniquely and
exclude the parameterization (60). From the time evolution of a relativistic Gamow vector
of the semigroup representation [sR, j ], one calculates (for simplicity here in the rest frame
p̂ = 0)

H×|[sR, j ]p̂ = 0j−
3 〉 = √

sR|[sR, j ]p̂ = 0j−
3 〉, (61)

where H× = P0. If we take the parameterization (59a), the action of a time translation on the
relativistic Gamow vector is given by

φG
sR

(t) = e−iH×t/h̄|[sR, j ]p̂ = 0j−
3 〉 = e−iMRt/h̄e−(�R/2)t/h̄|[sR, j ]p̂ = 0j−

3 〉. (62)

12
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The Born probability density for detecting the decay products (observable |ψ−〉〈ψ−|) in the
quasistable state φG

sR,j (t) = |Z−〉 at time t � 0 is then, as a consequence of (62), proportional
to

|〈ψ−|φG
sR

(t)〉|2 = e−�Rt |〈ψ−|φG
sR

(0)〉|2. (63)

From this we conclude that the Gamow vector with the relativistic Breit–Wigner line shape
1/(s−sR) and the parameterization of the S-matrix pole position given by sR = (MR −�R/2)2

has the lifetime τ = h̄/�R . Therefore (MR, �R) is the correct definition of (M,�) for a
relativistic resonance. With this, the ‘right’ values of mass and width of the Z-boson are

MR = Re
√

sR = 91.1611 ± 0.0023 GeV = MZ − 0.0026 GeV (64)

�R = −2 Im
√

sR = 2.4943 ± 0.0024 GeV. (65)

9. Conclusion

The Hardy space axiom is a refinement of the standard axiom of quantum mechanics. Standard
Hilbert space quantum mechanics works fine for spectra and structure of microphysical systems
in stationary states. For dynamically evolving states, for resonance scattering and for decaying
states, the Hardy space axiom works better and provides a theory that unifies resonance and
decay phenomena. If one admits more general operators for observables and states (as
mentioned in the epilogue) one also obtains exponentially decaying states that are associated
with S-matrix poles of order N > 1, but these states cannot be described by vectors or
kets. They are described by non-diagonalizable operators (A.6), (A.7), and their Hamiltonians
contain non-diagonalizable Jordan matrices. The Hardy space axiom also introduces a novel
concept: a quantum mechanical beginning of time or the semigroup time t0 = 0. This concept
is not entirely new. In Gell-Mann and Hartle’s quantum theory of the universe [34], this
t0 = tbig bang. But how does one see this time t0 = 0 in the usual experiments with quantum
systems in the lab? The discussion of this question needs to be postponed to another paper.
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Epilogue

In order to be as intelligible as possible, the talk at QTS-5 was confined to the simplest
cases possible: the observables were represented by vectors ψ−, i.e., by � = |ψ−〉〈ψ−|;
the states were represented by vectors φ+, and for the decaying states we used the Gamow
state vector φG of (44). However observables are in general represented not by |ψ−〉 but by
operators that obey the Heisenberg equation (7a), and states are in general described by density
operators W obeying the von-Neumann equation (8a). Some of these generalizations are
accommodated in a straightforward way, e.g., the observable one generalizes |ψ−〉〈ψ−| −→
� = ∫

dEλ(E)|−E〉〈E−|. Or for the state one goes to density operators |φ+〉〈φ+| −→ W

so that the Born probabilities (14) become |〈ψ−|φ+(t)〉|2 −→ Tr(�W(t)). This can be done
when the Hamiltonian H can be diagonalized, as is always the case for self-adjoint H in the

13
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Schwartz space with the basis system (33a), (33b) in (32). The Dirac basis vector expansion
in the matrix representation (33) is given as⎛

⎜⎜⎜⎜⎜⎝

〈ψ |H×|E1)

〈ψ |H×|E2)

...

〈ψ |H×|EN)

〈ψ |H×|E−〉

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

E1 0 · · · · · · 0
0 E2 0
...

. . .
...

... En 0
0 0 · · · 0 (E)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

〈ψ |E1)

〈ψ |E2)

...

〈ψ |EN)

〈ψ |E−〉

⎞
⎟⎟⎟⎟⎟⎠ (A.1)

where (E) denotes a continuously infinite submatrix, and E takes the values 0 � E < +∞
in the diagonal with the off-diagonal elements being zero. If one uses instead of the Hilbert
space axiom (9) with Dirac expansion (32) the Hardy space axiom (49), (50), the energy
wavefunctions 〈ψ−|E−〉 ∈ H ∩ S can be continued into the lower complex energy plane
(2nd sheet), and Gamow vectors (44)—generalized eigenvectors with complex generalized
eigenvalue zR = ER − i�/2—can appear. The Gamow vector (44) is associated with a
first-order pole of the S-matrix (2nd sheet) at zR [17]. Assume that there are two resonances,
at zR1 and zR2 , and assume there are no discrete energy eigenvectors (no bound state) with
E1, E2, . . . , EN in (32). Then the matrix representation of the self-adjoint Hamiltonian has
the following form:⎛
⎝〈Hψ−|z−

R1
〉

〈Hψ−|z−
R2

〉
〈Hψ−|E−〉

⎞
⎠ =

⎛
⎝〈ψ−|H×|z−

R1
〉

〈ψ−|H×|z−
R2

〉
〈ψ |H×|E−〉

⎞
⎠ =

⎛
⎝zR1 0 0

0 zR2 0
0 0 (E)

⎞
⎠

⎛
⎝〈ψ−|z−

R1
〉

〈ψ−|z−
R2

〉
〈ψ−|E−〉

⎞
⎠ (A.2)

where (E) denotes again a continuously infinite submatrix with real values in the diagonal.
This—with one resonance at zR—is the case we have restricted ourselves to in the main part
of the paper. But the mathematical theory we have devised for a Breit–Wigner resonance
provides much more.

Because the Hardy space �+ is contained in the Schwartz space �, its dual �×
+ is much

richer than �×: in addition to the Lippmann–Schwinger kets (40) with real energy E and their
analytic continuations |z−〉—which are tacitly assumed in any analytic S-matrix theory—and
in addition to the ordinary Gamow kets (44), the space �×

+ also contains N -dimensional
subspaces MzN ⊂ �×

+ where N can be N = 1, 2, . . . , any finite number. The subspace MzN

is spanned by N Jordan vectors with complex generalized eigenvalue zN = (EN − i�N /2),

|z−
N �(0), |z−

N �(1), . . . , |z−
N �(k), . . . , |z−

N �(N−1), (A.3)

(whereMzN=1 is the space spanned by the ordinary Gamow ket in (44) |z−
1 〉(0) = |ER−i�/2−〉).

The kth-order Gamow vector |z−
N �(k), k = 0, 1, . . . , (N − 1), is a Jordan vector of degree

(k + 1), i.e., it fulfils the generalized eigenvalue equations [35, 36]

(H× − zN )k+1|z−
N �(k)= 0;

H×|z−
N �(0)= zN |z−

N �(0); (A.4)

H×|z−
N �(k)= zN |z−

N �(k) +�N |z−
N �(k−1) for k = 1, 2, . . . , (N − 1).

These equations are, like the eigenvector equation for Dirac kets (33a) and for Gamow vectors
(44) (Gamow vector = Jordan vectors of degree 1), understood as generalized eigenvector
equations (i.e., functionals) over the space �+. Jordan block matrices for non-Hermitian
Hamiltonians have been discussed before, e.g. [37, 38], and were used for finite-dimensional
phenomenological expressions of the S-matrix [39–42], but could not be implemented in
the general framework of quantum mechanics using the Hilbert space or the Schwartz space
axiom. Using the Hardy space axiom (49), (50) the Jordan–Gamow vectors can be derived
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from the N th-order pole of the unitary S-matrix [43, 36] in very much the same way as the
ordinary Gamow vectors were derived from the first-order S-matrix pole (43) [17]. The matrix
of the Hamiltonian H× has in the diagonal the complex eigenvalues zR = ER − i�R/2 of the
first-order pole position for the ordinary Gamow kets. In addition, it contains Jordan blocks
of Jordan–Gamow kets. For example, in the case of two first-order poles at zR1 and zR2 and
one second-order pole at z2 = E2 − i�2/2 the matrix of the Hamiltonian is given by⎛
⎜⎜⎜⎜⎝

〈Hψ−|z−
2 �(0)

〈Hψ−|z−
2 �(1)

〈Hψ−|zR1〉
〈Hψ−|zR2〉
〈Hψ−|E〉

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

〈ψ−|H×|z−
2 �(0)

〈ψ−|H×|z−
2 �(1)

〈ψ−|H×|zR1〉
〈ψ−|H×|zR2〉
〈ψ−|H×|E〉

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

z2 0
�2 z2

zR1

zR2

(E)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

〈ψ−|z−
2 �(0)

〈ψ−|z−
2 �(1)

〈ψ−|zR1〉
〈ψ−|zR2〉
〈ψ−|E〉

⎞
⎟⎟⎟⎟⎠ .

(A.5)

Here (E) denotes the continuously infinite matrix with diagonal elements E, as in (A.2). Each
zRi

corresponds to the ordinary Gamow ket (44). And the 2 × 2 matrix on the top left corner
is the Jordan block (A.4) of degree 2.

In general, from the N th-order S-matrix pole at zN one obtains the N basis vectors (A.3)
and an N -dimensional Jordan block (A.4) in place of the two-dimensional Jordan block in the
matrix (A.5). This means the second-order or N th-order pole of the S-matrix can no longer
be described by a state vector, like the bound states by |En) with real discrete eigenvalues,
or the first-order resonance states (Gamow states) by |z−

Ri
〉 with complex eigenvalue zRi

of
the self-adjoint Hamiltonian H. Instead, the state derived from the N th-order S-matrix pole is
described by a non-diagonalizable density operator or state operator [36]

WPT = 2π�

N−1∑
n=0

(
N

n + 1

)
(−i)nW(n) (A.6)

where the operators W(n) are defined as

W(n) =
n∑

k=0

|z−
N �(k)(n−k)≺− zN |, n = 0, 1, 2, . . . ,N − 1. (A.7)

The pole term of the N th-order S-matrix is associated with a sum (A.6) of the operators W(n).
The operators W(n) represent components of this pole term state WPT which are ‘irreducible’
in a way specified below in (A.11). In the case N = 1 (ordinary first-order resonance pole),
the operator (A.6) becomes

WPT = 2π�|z−
1 �(0)(0)≺− z1| = 2π�W(0) = |φG〉〈φG|. (A.8)

This is the operator description of the Gamow state whose vector description is given by φG

of (44) and whose time evolution is, in agreement with (45), given by

WG(t) = e−iH×t |φG〉〈φG|eiHt = e−izRt |φG〉〈φG|eiz∗
Rt

= e−i(ER−i�/2)t |φG〉〈φG|ei(ER+i�/2)t = e−�tWG(0). (A.9)

Only the 0th-order Gamow vector |z− �(0)= 1√
2π�

φG has exponential time evolution. In

general, the kets |z−
N �(k), k = 0, . . . ,N − 1 have very complicated time evolution given by

e−iH×t |z−
N �(k)= e−izN t

k∑
ν=0

�ν

ν!
(−it)ν |z−

N �(k−ν) t � 0. (A.10)

These are representations of the time translation semigroup, which (for N > 1) are not one
dimensional. The existence of this kind of representation for the causal spacetime translation
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group has already been mentioned in [16]. The appearance of a linear term in the time
dependence for a second-order pole resonance N = 1 in (A.10) has been well known for
many years [22, 44, 45]. That such linear time dependence has never been observed was
used as an argument against the existence of higher order pole resonances [45]. This was
a misconception because the state associated with the S-matrix pole is described by a state
operator (density matrix) (A.6), which has an exponential time evolution, as we shall report
now.

The density operator or statistical operator of the state derived from the N th-order pole
is given by (A.6) with (A.7). It is remarkable that with the use of (A.10) one obtains after a
complicated calculation a very simple result

W(n)(t) = e−iH×tW (n)eiHt = e−�t

n∑
k=0

|z− �(k)(k−n)≺− z| = e−�tW(n)(0), t � 0. (A.11)

This result means that the complicated non-reducible (i.e., ‘mixed’) microphysical state
operator W(n) defined by (A.6) and (A.7) has a simple and purely exponential semigroup
time evolution, like the 0th-order Gamow state (A.9), and thus leads to the exponential law for
the probabilities. The operators W(n) are probably the only operators formed by the dyadic
products |z−

N �(m) (�) ≺− zN | with m, � = 0, 1, . . . , n, that have purely exponential time
evolution. Thus the operators W(n), n = 1, 2, . . . ,N − 1, are distinguished from all other
operators in MzN . The microphysical decaying state operator associated with the N th-order
pole of the unitary S-matrix WPT is the sum (A.6) of these W(n). Because of the result (A.11)
(independent of the time evolution of n) this sum has again the simple, exponential time
evolution

WPT(t) ≡ e−iH×tWPT eiHt = e−�N tWPT, t � 0. (A.12)

Thus, the theory that describes exponentially decaying states by Gamow vectors (44) also
admits the possibility of exponentially decaying states that are associated with S-matrix poles
of N th order at the position zN = EN − i�N /2. The ‘mixed’ state (A.6) associated with the
N th-order S-matrix pole also has an exponential time evolution. The probability to register
an observable �(t) (representing, e.g., a detector) in the state W(n) or WPT is obtained using
(A.11) or (A.12) as

Tr(�(t)WPT) = Tr(eiHt� e−iH×t WPT) = Tr(� e−iHt WPT eiHt ) = e−�N t Tr(�WPT),

0 < t < ∞. (A.13)

These exponentially decaying states cannot be described by a vector like |φG〉〈φG|. The
simplest choice for this kind of state operator is the one associated with the pole term of a
second-order S-matrix pole at z2:

WPT = 2π�(2W(0) − iW(1))

= 2π�(2|z−
2 �(0) (0)≺− z2| − i(|z−

2 �(0) (1)≺− z2| + |z−
2 �(1) (0)≺− z2|)). (A.14)

In the subspaces MzN ⊂ �×
+ associated with the N th-order pole, the Hamiltonian H is non-

diagonalizable and so is the state operator. The Hardy space theory, which was needed for
the theoretical description of first-order pole states (by Gamow vectors), also provides the
mathematical means for higher order pole states described by non-diagonalizable operators;
this is not possible in the Hilbert space or the Schwartz space. This does not constitute a proof
that these states exist in nature—higher order S-matrix poles may be excluded for some other
physical reasons—but it provides a mathematical possibility, and it is an argument against the
exclusion [45] of exponentially decaying higher order resonance states.
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